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Magnetic hysteresis and flux creep measurements in single crystal samples of YBa2Cu3O7−� �YBCO� are
presented for a wide range of B,T phase space. Some of these samples can be described as weakly or
collectively pinned. For these, over a large portion of this phase space, the flux creep can be described in terms
of thermally activated single-fluxoid motion. A simple model based on maximizing the pinning energy of a
fluxoid segment provides a good, semiquantitative picture of the low-temperature data, where the experimen-
tally measured critical current density j is proportional to 1 /T and the activation barrier height is proportional
to j−�, where �=1. In this model individual fluxoids are pinned by stochastic fluctuations in defect concen-
tration, and are driven over the pinning barriers by critical currents and thermal activation. Incorporating flux
lattice elasticity into this simple model leads to new predictions for the low-temperature data and allows the
simple model to be extended to higher temperature. There are two distinct effects, both of which can be put in
the form of effective current densities. One effective current density js arises from direct fluxoid-fluxoid
repulsion, and the second effective current density jr arises from fluxoid relaxation. In YBCO at 7 K and 2 T,
where the measured critical current density is j=8.9�109 A /m2, we find js=0.57�109 A /m2 �6% � and
jr=−2.1�109 A /m2 �−20% �. We present a discussion of their origin that leads to plausible temperature and
field dependences. The model accounts for the rapid drop of j�T� with increasing temperature, the peak effect
in j�B� at high temperature, and the temperature and field dependence of the “critical exponent” �. Thermal
fluxoid vibrations play an important role in the pinning, and we find effects consistent with calculations in the
literature. The model postulates that fluxoid motion takes place by hopping in segments on a characteristic
length scale lmodel. In the model we find lmodel=104 nm at 7 K and 2 T. A completely independent measure-
ment from the creep-derived four-volume VX yields a length lVX=102�5 nm at the same temperature and
field. Excellent agreement between the two independently determined lengths persists over a wide range of
temperatures. A failure of these two lengths to agree marks the boundary for single-fluxoid hopping, and we
present a diagram of the pinning regimes in B,T phase space. From the measured prefactor of thermally
activated creep at 10 K and 2 K we infer a value for the attempt frequency fa=8.5�1010 s−1. This value is in
reasonable agreement with a published theoretical calculation of the relaxation frequency for overdamped
fluxoids in an Abrikosov lattice. Finally, based on these data we estimate the mass per unit length of a YBCO
fluxoid segment, and compare our result with Suhl’s theory to obtain a quasiparticle effective mass of 30 free
electron masses.
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I. INTRODUCTION

In 1986, Bednorz and Müller1 reported the discovery of a
transition metal compound with a superconducting transition
temperature at 35 K, far above the high-Tc record for the
previous 20 years. Soon after, YBa2Cu3O7−� �YBCO� was
discovered to have a Tc above liquid nitrogen.2 A vast effort
has been expended in probing these rich and interesting ma-
terials, and there are now hundreds of examples of high-
temperature cuprous oxide superconductors. There also is a
developing theoretical consensus that these superconductors
are examples of doped Mott insulators,3 with the doping
coming either from chemical substitution or by varying the
oxygen content. Experimentally, except for the d-wave pair-
ing mechanism4 �presumably coming from the Cu 3d orbit-
als�, the superconducting state itself seems quite conven-
tional. The superconductivity arises from Cooper pairs, and
an early study on YBCO observed the hexagonally correlated
flux lattice of singly quantized vortices with flux of �0
=h /2e=2.07�10−15 T m2.5

Many technological applications depend on the properties
of the superconductor in the mixed state. When a current
dependent force, usually referred to as a Lorentz force, acts
on the fluxoids, these fluxoids must be pinned in place to
prevent dissipation. The total energy is reduced when a flux-
oid’s normal core, of approximate radius �, the supercon-
ducting order parameter coherence length, overlaps with any
defect that suppresses the superconducting order parameter.
Extended defects can act as strong pinning centers. These
strong pinning defects include twin boundaries, columnar de-
fects produced by heavy ion implantation,6 fast neutron irra-
diation defects,7 and precipitates. Point defects also can act
as pinning centers, and it is often suggested that oxygen va-
cancies are effective point defect pinning centers in these
nonstoichiometric systems. Recent scanning tunneling mea-
surements directly confirm the role of oxygen vacancies in
pinning.8 However, in extreme type II materials, point de-
fects are such weak pinning centers that it requires large
numbers of them to pin a fluxoid. In this case, it is the sto-
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chastic fluctuations in defect concentration that lead to pin-
ning. This type of pinning is often referred to as cooperative
or collective pinning.9 A large body of important results on
pinning is presented in two detailed reviews10,11 However,
collective pinning is a complex stochastic problem even for
the simple case of single-fluxoid pinning, and there remain
substantial disagreements between theory and experiment.

If a sample in the mixed state is perturbed, for example,
by a change in the external field, very large currents are
induced and fluxoids will flow. The induced currents rapidly
fall and very quickly the residual flux motion will be deter-
mined by thermal activation. This thermally activated motion
is called flux creep and is described by a rate equation for the
critical current density j,

dj/dt = K exp�− EB/kT� , �1�

where the prefactor K is determined by sample geometry, EB
is the barrier height to thermal activation, and T is tempera-
ture.

In an earlier work12 we adapted a simple collective pin-
ning model for thermally activated motion of single fluxoids.
In this model of thermally activated flux creep, the standard
picture of stochastic pinning is assumed. Within this picture,
consider a segment of fluxoid of length l inside the sample.
As this segment moves inward, it encounters a varying pin-
ning potential whose amplitude is of the order �n�2lE1,
where E1 is the binding energy of a single point defect inside
the fluxoid core, n is the pinning defect density, and �2l is the
volume of the fluxoid core. Every time the fluxoid segment
moves a distance inward on the order of �, it samples a new
set of pinning defects, statistically uncorrelated with the pre-
vious set. Therefore the rows of potential wells that hold the
fluxoid have a depth, or binding energy of EB��n�2lE1.
This potential energy landscape is sometimes referred to as a
washboard potential.10 In the presence of a current density j
the “washboard” becomes tilted and the barrier height to mo-
tion of a segment of length l then is given by

EB = �n�2lE1 − �j�0l�� , �2�

where the second term arises from the Lorentz force induced
by the current density.

This local picture of a fluxoid segment leaves about one-
half to two-thirds of the full fluxoid length unaccounted for,
i.e., the gaps between the wells along the length of the flux-
oid where the fluxoid is not pinned. However, as the un-
pinned segments bulge inward �driven by the Lorentz force�,
they need only move a very small distance of the order of
one or two � until they encounter wells of their own to hold
them against the external driving force.

In this picture, almost the entire fluxoid is pinned. How-
ever, the role of the “kinks” that separate the individually
pinned segments must be considered. Elastic stress in these
transition sections could easily “unzip” the pinned segments.
The kink stress can be relieved by increasing the length of
the transition segment, however, unless the length of the
transition segment is small compared to the length of the
pinned sections, the entire model is irrelevant. Rather sur-
prisingly, both conditions can be met. The extra contribution

to the free energy per unit volume of a tilt deformed region13

is �g= 1
2KT�2, where KT is the elastic tilt modulus and � is

the tilt angle. However, in an anisotropic superconductor
with weakly coupled planes, the tilt modulus can be dramati-
cally reduced on short length scales.13–15 For YBCO the re-
ducing factor is m1 /m3�1 /25, where m1 is the effective
mass in the conducting plane and m3 is the effective mass
perpendicular to the conducting plane. Crabtree and Nelson16

have applied these considerations to a closely related prob-
lem and their result gives the energy cost for our transition
segment of

�E �
�0

25
� �2

d
� ,

where

�0 =
1

4	�0
��0



�2

is the fluxoid energy per unit length, and d is the transition
length and � is the transition height. When �E�E1 a single
defect suffices to hold the segment in place. The equality
condition is met for a segment of a few nanometers in length.
For most experimental conditions the length of the thermally
activated pinning segments that move is much greater than
this distance.12 A tentative first approximation is to neglect
the elastic energy effects of the kinks in this model.

The essential hypothesis of the simple maximum pinning
model �MPM� from Ref. 12 is that drifting fluxoids tend to
hang up on obstructions on a length scale with the largest
barrier height EB. Returning to Eq. �2�, one can maximize the
barrier energy for length by setting dEB /dl=0 and solving
for lmax to obtain

lmax = nE1
2/�2�0j�2, �3�

and substituting lmax into Eq. �2� gives

EB = n�E1
2/4�0j . �4�

On long length scales the fluxoid is stabilized against the
Lorentz force by individually pinned segments of length lmax.
On short length scales any segments that jump will have a
high probability of jumping back. In this picture, there is
little or no irreversible motion of the fluxoid except on
lengths near lmax.

Equations �1�, �3�, and �4� provide a complete description
of the model. There are several reasons to investigate this
simple model further. At fixed B and T, we can find the initial
barrier height EB�j0� from Eq. �1� and the measured initial
creep rate value �dj /dt� j0

. Combining Eqs. �3� and �4� we
find lmax=EB�j0� /�0�j0. In Ref. 12, it is found that at B
=2 T and T=5 K that lmax=75 nm. This value for the length
of fluxoid segment that moves is plausible in magnitude and
it is compatible with ignoring the end effects of the kink
transition segments. Geshkenbein and Larken17 show that
EB�T except for minor logarithmic corrections. Thus, from
Eq. �4�, j�1 /EB�1 /T and lmax�T2. These predictions are
confirmed over a limited low temperature range where the
material parameters are nearly constant.12
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Despite these encouraging results, the simple MPM de-
scribed above has obvious limitations. �1� Experimental data
in the literature show that EB is approximately proportional
to j−�, where the power law coefficient � is on the order of
unity. However, an experimental value of �=1.0 is never
observed over any extended region of B ,T phase space, and
the departure from unity varies systematically with both tem-
perature and field.11 �2� A strong field dependence of the
current density �a peak effect� is observed in YBCO even at
temperatures and fields where single-fluxoid motion is
expected.18 No model consisting of isolated fluxoids driven
by a current through a static potential can give a B dependent
j at constant T. �3� The simple MPM as presented above is
essentially a low-temperature theory. To extend this model to
higher temperature, one must include the effects of thermal
vibration of the individual fluxoids.10 In addition, at higher
temperature, the role of fluxoid-fluxoid interactions will
grow, eventually driving the system to activated flux bundle
motion. A higher-temperature model is needed to account for
these effects.

In this paper we deal with all of these issues. The experi-
mental details are presented in Sec. II. Results and discussion
are given in Secs. III–V. In Sec. III we present an extended
maximum pinning model where we postulate that the effects
of fluxoid elasticity can be incorporated into the simple
MPM of Eq. �2� by adding a phenomenological term �j to
the critical current density j. Two results immediately follow:
�1� The MPM yields a functional form for EB�j� that is in
better agreement with creep data than any power law func-
tion, and �2� at low temperature, the MPM predicts a linear
temperature dependence for an “effective” power law coef-
ficient ��T� in agreement with experiment.19 We then iden-
tify two physical effects that are consistent with the postu-
lated phenomenological term, derive their temperature and/or
field dependences, and compare the predictions with data. In
Sec. IV we show that in the single-fluxoid hopping regime,
the segment length can be measured experimentally indepen-
dent of any model and show that the experimental data and
the MPM predictions are in excellent agreement. We con-
sider this agreement to be by far the strongest support for the
MPM. Even the lengths given in Eq. �3� from the simple
MPM provide very good agreement for hopping segment
lengths at low temperature. The detailed refinements of the
MPM given in Sec. III simply extend the excellent agree-
ment between data and model to much higher temperatures.
Section V stands nearly independent of any model discus-
sion, but collects some of our results as they apply to the
physical nature of the fluxoid. Summary and conclusions are
presented in Sec. VI.

II. EXPERIMENT

A. Sample selection

In order to obtain Cooper pairs in a high-Tc supercon-
ductor one must add defects or impurities, presumably to
break the antiferromagnetism in the Mott insulator. These
defects and/or impurities also contribute to the pinning re-
quired to sustain large currents. This dual role for the dopants
coupled with the difficulty in doping a ceramic material can

complicate the problem of sample characterization. In par-
ticular, in these ceramic materials the requirement to dope
usually implies annealing sequences that may lead to precipi-
tates and defect clusters that act as strong pinning defects. To
address this issue, we used two different growth techniques
and two different annealing techniques to produce four dis-
tinct sets of samples. One growth technique was the self-flux
method of Schneemeyer,20 and the second technique
followed the procedure of the Vancouver group, including
high temperature soaks.21 One type of anneal was done for
an extended time in flowing O2 at 450 °C �following
Schneemeyer� and the second type of anneal included high-
temperature soak stages �following the Vancouver group an-
nealing sequence�. These four sets are identified as SS, SV,
VS, and VV. The first letter refers to the growth technique
and the second letter refers to the type of anneal. Typical
sample sizes are â� b̂� ĉ equal to 1�1�0.05 mm3.

For the purposes of this study, we need to identify
samples from this set that contain a minimum of strong pin-
ning defects. The solution of this dilemma is most easily
found by inverting the problem. Fast neutron irradiated
samples contain many strong pinning defect clusters. �The
thermal spike at the end of the primary displacement cascade
results in a nearly ideal volume of heavily damaged material,
producing a single strong pinning defect.� Thus, fast neutron
irradiated samples provide benchmarks of strong pinning
against which other samples can be evaluated, as shown in
Table I. Here we have characterized each of fourteen dis-
tinctly prepared samples, using one semiquantitative mea-
sure, and four simple qualitative features that can be readily
identified experimentally. In addition to the multiple samples
from each of the above four distinct sample sets, the table
includes three fast neutron irradiated samples and one un-
twinned sample obtained from the Vancouver group.21

In their classic study of strong pinning, Beasley, Labusch,
and Webb22 show that the barrier is Estrong� �jmax− j�3/2,
where jmax is determined by the strength and number of the
strong pinning defects. In general, weak or collective pinning
can be approximated by a power law function, Ecollective
� j−�. In principle, we can distinguish the two types of pin-
ning by comparing creep data fits to the two barrier height
functions. Unfortunately, for every initial current density
j0�T�, the range of creep data is so limited that the data can
be fit to either function. One solution is to fit each set of
creep data at fixed T to an amplitude and initial slope, and
force both functions to fit that amplitude and slope. It follows
that ��j0�=3j0 /2�jmax− j0�. We then fit all samples to the
collective pinning expression. For strong pinning samples
the inferred value of � will rise sharply as j0�T� approaches
jmax �as T falls�.23 This sharp rise in � as temperature falls is
a useful criterion for identifying strongly pinned samples.
Therefore, in Table I we use d� /dt, where t is the reduced
temperature, as a semiquantitative indication of the nature of
the pinning. In addition to this semiquantitative measure,
four qualitative features are used in the table: �a� at low
temperature j�T� falls rapidly with increasing T �approxi-
mately as 1 /T�, �b� j�B� develops a broad maximum begin-
ning at about 30 K, �c� j�B� develops a pronounced peak
effect beginning at about 50 K, and �d� in the range of
5–40 K, ��T� initially rises and then falls.
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We note that all three of the fast neutron irradiated
samples exhibit large, negative values for d� /dt, as expected
for samples dominated by strong pinning defects. None of
the fast neutron irradiated samples display any of the four
qualitative features listed above. In contrast, all of the SS
samples have a positive d� /dt �as will be shown in Sec. III,
a positive value is expected for collective pinning� and they
all display each of the four features in Table I. We therefore
attribute the four features above as indications of collective
pinning. It is of particular note that the untwinned sample
displays a very clear indication of strong pinning, even
though there are no twin plane boundaries in this sample.
Presumably precipitates are the source of strong pinning de-
fects in this sample. This finding also supports an argument
that even though twin boundaries may act as strong pinning
sites, they do not play a dominant role in pinning when the
spacing between twins is large compared to the flux lattice
spacing. For the phase space investigated in the paper, this
condition is met in our twinned samples with the possible
exception of the high temperature and low field regime
where the twin boundaries may suppress a tendency for flux-
oid entanglement.13

Nowhere in this discussion do we mean to suggest that it
is difficult to prepare samples dominated by collective pin-
ning. The four features we use as criteria for collective pin-
ning are widely reported in the literature.10,11 Specific ex-
amples include but are not limited to: item �c� Abulafia24

�note, they report only data at higher temperature, however,
as discussed later, high temperature data in our samples rep-
licate their results� and Kupfer18 �in heavily doped samples�
and item �d� reported by Thompson et al.19 Based on this
characterization, we conclude that pinning in our “SS”
samples is dominated by the collective or cooperative pin-
ning of weak pinning defects. The other three sets of samples
fall into categories with various degrees of strong pinning
influence. All of our SS samples are similar and have current
densities near 1 MA /cm2 at low temperature. Based on our
semiquantitative measure d� /dt, one SS sample has the least
influence from residual strong pinning defects. In this paper

we use the above four features and data from our “best”
sample to modify and test the theory. However, our results
remain essentially unchanged for data from any of our SS
samples.

B. Measurements

Flux creep and hysteresis data were obtained using a
Quantum Design SQUID magnetometer. Critical currents
were obtained from magnetic moment measurements assum-
ing the Bean critical state.25 Care was taken to compare our
magnetometer results with micro-Hall probe measurements
by Abulafia et al.24,26 We find excellent quantitative agree-
ment with the micro-Hall data for both hysteresis and creep
data indicating that the volume averaging effect of the mag-
netometer does not introduce any significant distortion of our
results.

In creep measurements we find that the decay of the mag-
netic moment with time is well fit to the analytic function
m�t�=m�t0�+A ln�1+ �t− t0� /�+B ln2�1+ �t− t0� /�, where t0

is the time of the initial measurement and A, B, and  are
fitting parameters. This three-parameter fit provides excellent
agreement with relaxation data.12 The instantaneous mag-
netic moment and its time derivatives used in this study were
obtained using this analytical formula. In addition, “creep in”
and “creep out” experiments were averaged to eliminate a
small correction factor associated with the fact that the creep
rate is different depending on whether the sample is in the
critical state for increasing or decreasing fields.22

The barrier height at initial time t0 �approximately 60 s
for our measurements� was determined using a global
graphical technique.27 Our results, in agreement with Maley
et al.27 and others,11 confirm that the initial barrier height is
proportional to temperature as determined from the classic
solution to the rate equation.17 For the sample used in this
study we obtained EB�j0�= �23.0�0.5�kT.

Critical currents were obtained from the magnetic mo-
ments under conditions of full flux penetration, i.e., for
samples in the Bean critical state. Failing to reach full flux

TABLE I. Sample characterization. The number preceding the set name is the number of samples in the
set. d� /dt is the average value for the set. Columns �a�–�d� refer to the four features characteristic of weak
pinning. A one indicates it is observed and a zero indicates it is not observed. The set naming convention and
the characteristics are given in the text. Data for both VS samples are included to emphasize the correlation
between pinning character and d� /dt.

Type of pinning Sample set
d� /dt

5–10 K

�a�
j�1 /T

5–20 K

�b�
j�B� broad max

30–40 K

�c�
j�B� peak
50–80 K

�d�
��T� max

�20 K

Weak �3� SS 1.7 1 1 1 1

Incipient strong �3� SV −3.2 0 1 1 0

Mixed �2� VS −2.6 0 1 0 0

−5.0 0 0 0 0

Strong �2� VV −8.2 0 0 0 0

Strong �3�
Irradiated

−9.5 0 0 0 0

Strong �1�
Untwinned

−13.0 0 0 0 0
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penetration leads to anomalously fast creep. The requirement
for full flux penetration prevents meaningful creep measure-
ments at small fields and low temperature, where the currents
are large. At the same time, the production of a Bean critical
state for the “creep out” mode requires very large fields when
j is large, again limiting our range at low temperature. It is
not sufficient to simply reach the Bean critical state. In order
to avoid significant variation in the field across the sample,
one must apply fields well above the Bean critical field. This
additional constraint is not always well met at temperatures
of 30 K and below.

III. PINNING—RESULTS AND DISCUSSION

A. Pinning models

1. Standard model

The standard model of collective pinning of single flux-
oids is discussed in detail in the review by Blatter et al.10 In
their review they address the apparent paradox that a pinning
force that arises from stochastic fluctuations must grow as
the square root of length and thus cannot pin a long stiff
fluxoid against any finite current density. They note that
when a fluxoid is allowed to relax, it introduces an elastic
strain. They then obtain a critical pinning length Lc by mini-
mizing the free energy per unit length when this strain en-
ergy is included. In this relaxed state, segments of length Lc
are pinned independently and balance the Lorentz force to
determine a critical current density jc, hence resolving the
apparent paradox.

Further results based on the standard model provide a
derivation of the binding energy EB�j�=Ec�jc / j��, where Ec

is a constant determined by material parameters of the super-
conductor, including the average density of weak pinning
centers, and jc is the depinning current density. The power
law coefficient � is obtained from scaling arguments28 and
the authors find that �=1 /7 and by inference that j�1 /T7.
Neither result has been substantiated by experiment. In this
paper, we present an alternative model for the collective pin-
ning of single fluxoids.

2. Maximum pinning model

We present an alternative model that is based on an ex-
tension of the simple model discussed in the Introduction. In
the following section we supplement Eq. �2� with two addi-
tional contributions to the barrier height seen by a moving
segment. These effects involve, respectively, local elastic
strain and the dynamics of motion. Each contributes a term
that is proportional to length. The constant of proportionality
of each of these terms has units of energy per unit length and
can be written as ��j��0�, where �j is an effective current
density. Note that this effective current density is artificial;
however, it provides a simple mathematical solution to the
expanded equation. The measured critical current density j in
Eq. �2� is simply replaced with j+�j. As before, setting
dEB /dl=0 and solving for lmax leads to

lmax =
nE1

2

4�0
2�j + � j�2 , �5�

and

EB =
n�E1

2

4�0�j + � j�
. �6�

Since this form for the barrier height is no longer a power
law function of j, the MPM now predicts that creep data
should deviate from the power law form given by scaling
arguments. Creep data at 2 T and 50 K are shown in Fig. 1.
The solid line is the fit based on the MPM �Eq. �6��, and the
dashed curve is a power law curve that has the same magni-
tude and initial slope as the data. Both functions fit the data
reasonably well, especially in the early creep data. However,
as j falls, the power law function rises too steeply and begins
to systematically deviate from the data. Both curves are one
parameter fits where ��j0��constant is the fitting parameter
for the power law function at the start of the creep and
�j / j0�constant is the fitting parameter for the MPM where
j0 is the initial critical current measurement of the creep
experiment. In this example ��j0�=0.64 and �j / j0=0.56. For
comparison, at 2 T and 20 K the corresponding values are
��j0�=1.42 and �j / j0=−0.30. In this case �data not shown�,
the power law function rises too slowly while the maximum
pinning model continues to give very good agreement with
the data. In all cases the MPM provides significantly better
agreement with the data than the power law model �except
when ��1, where the two models are indistinguishable�. No
plausible j dependence in the prefactor K from Eq. �1� would
alter these conclusions.

As discussed earlier, much of the creep data for high-Tc
superconductivity has been interpreted in terms of a power
law expression that can be written as EB�j�=E0�j0 / j��, where
E0 is the barrier height at the start of the creep. From Eq. �6�
we can write EB�j�=E0�j0+�j� / �j+�j�. We note that by set-
ting

23

24

25

26

27

28

29

0.7 0.8 0.9 1

j/jo

E
B
(j
)/

k
T

data

Power law

Model

FIG. 1. EB�j� is obtained from creep data measurements at 2 T
and 50 K. The solid circles are the data, the dashed line is the power
law model, and the solid line is the single-fluxoid collective pinning
model.
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��j0� =
j0

j0 + � j
, �7�

these two expressions for EB�j� will have the same magni-
tude and initial slope versus current density. As shown in Fig.
1 for all but the most precise measurements, these two ex-
pressions for the barrier height remain nearly identical as j
falls during the creep process. We can use this near identity
to facilitate comparison between results of the MPM and
those in the literature that are interpreted in terms of a power
law function.

At sufficiently low temperature there will be negligible
temperature dependence in any of the material parameters.
However, j0 depends on temperature and using EB�j0�
=23kT, Eq. �6�, and Eq. �7� one can show exactly that

��j0,T� = 1 + cT , �8�

where c is a constant. The prediction of the temperature de-
pendence for ��j0 ,T� given by Eq. �8� is in excellent agree-
ment with low temperature data �see Thompson et al.19 and
data shown in Fig. 2 in Sec. III D�.

Both the creep data and the observed temperature depen-
dence of “�” lend strong support to the argument that elas-
ticity effects can be modeled by incorporating an effective
current density �j into the expression for the barrier height in
Eq. �2�. In the next section, we discuss possible sources for
this new term.

B. Effective current density �j

We identify two physically plausible effects that can con-
tribute to the barrier height for single-fluxoid motion. One
effect arises from the repulsive force between neighboring
fluxoids.29 This force is responsible for ordering of the flux
lattice at low temperature, as directly observed in YBCO.5

The fluxoid-fluxoid interaction also determines the elastic
constants of the flux lattice. The effect of this force on flux
creep can be estimated by considering a long fluxoid of
length L. In our view, during creep the moving fluxoid ex-
hibits a walking motion. A segment that is activated will leap
a distance of a few � ahead of its adjacent neighbors, and
remain there until the adjacent segments later move ahead. It
will always be the lagging segments that jump. Presuming a
segment of length l lags a distance �, elastic forces lower the
binding energy of this segment by an amount of order

�Es �
�e

2
� �

a0
�2

�a0
2l� ,

where the local strain is approximately � /a0, the appropriate
volume is a0

2l, a0 is the average flux lattice spacing, and �e is
an elastic modulus. It is likely that no single elastic modulus
will be appropriate over the entire B ,T phase space. How-
ever, de Gennes and Matricon29 observe that for most effects,
the elastic tensor can be replaced with a single modulus.
Since our interest is in a flowing stream of fluxoids, the
appropriate single modulus must be the shear modulus

�shear = �4	

�0
� �0B

64	2
2 ,

where �0 is the permeability constant, B is the applied field
and 
 is the magnetic screening length. This shear energy
term can be written as an effective current density

js =
��shear�

2�0
, �9�

where � is a dimensionless adjustable constant on the order
of unity that can be obtained from fitting to the data.

There is a second physical effect that can alter our basic
equation for the barrier height and it also yields an effective
current density term. The origin of this term is the relaxation
of the fluxoid segment configuration that occurs very shortly
after it is trapped. Poole, Farach, and Creswick30 point out
that a moving fluxoid responds to the underlying defect po-
tential energy landscape fairly well. However, immediately
after a segment is trapped it will take some time to optimally
conform to the local landscape—both because of thermal
excitations from its motion and because of the many con-
straints in reorganizing on a fine scale. The final stage of
conformation presumably will involve deformations of am-
plitude of order � �determined by the superconducting order
parameter� that add at most a few net defects to the pinning
�the moving fluxoid likely will respond to distortions that
add more defects�. When a moving fluxoid fails to respond
on this level, the additional pinning energy gain from a dis-
tortion of a trapped fluxoid segment will appear as a kind of
static friction. We define a characteristic length lc along the
segment that equates the strain energy of the distortion with
the binding energy of a single defect. Distortions shorter than
this length cannot produce a net gain in fluxoid binding. This
characteristic length is lc��0�2 /E1. The net pinning energy
gain of a trapped fluxoid segment that fully conforms to the
local environment will then be

�Er � �E1
l

lc
� �

E1
2

�0�2 l ,

where � is the effective number of additional pinning defects
gained from a distortion of length lc and l / lc is the average
number of distortions in length l. While this derivation is
little more than a simple dimensional analysis, it allows us to
obtain an estimate for this energy term that can be used in the
model. This pinning energy contribution also can be written
as an effective current density

jr = −
�E1

2

�0�0�3 . �10�

The negative sign indicates that this effective current density
increases the barrier height. We assume that ��1. If � is
much larger, such configurations would likely be picked up
by moving segments and hence, would not contribute to the
additional “static binding.” In any case, we can treat � as an
adjustable, dimensionless parameter to be determined from
the data.
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The net effective current density �j is the sum of these
two terms �Eqs. �9� and �10��. We obtain the temperature
and/or field dependences of these terms in the next section.

C. Temperature and field effects

Implicit temperature dependence is introduced in part
through the two material parameters that characterize the su-
perconductor, 
�t� and ��t�, where t is the reduced tempera-
ture. Since most of our data are in phase space far from the
Ginzburg-Landau �GL� limit, we use the experimentally
measured temperature dependence 
�t�2=
0

2 / �1− t4�,31 with

0=140 nm. The experimental measurements of 
�t� are
consistent with the standard two-fluid model, therefore we
also assume ��t�2=�0

2�1+ t2� / �1− t2� with �0=1.4 nm �al-
though the results remain essentially unchanged if the GL
temperature dependence is used for ��t��. The remaining
temperature dependent terms are �0�t��1 /
�t�2, E1�t�
��3Hc

2���t� /
�t�2, where Hcis the thermodynamic critical
field, and �shear� (��t� /
�t�)2. The shear modulus also is pro-
portional to B. The low temperature value for the product
nE1

2 is measured from experiment. If the pinning defect con-
centration n is given by the oxygen vacancy concentration,
then for our sample n�9�1026 m−3 and E1�0��3
�10−22 J�2 meV.

Thermal fluctuations of the flux lattice are known to re-
duce the effectiveness of collective pinning. Many authors
discuss flux lattice fluctuations.10,13–15,32 Here we follow the
notation of Fisher, Fisher, and Huse15 for anisotropic mate-
rial. For YBCO, the mean-square-vortex line displacement W
is given by

W = 	�x − x0�2
 = 5	�0
��0/B
2kT/�0

2. �11�

For large amplitudes of fluctuations it has been argued that
the pinning effectiveness is reduced in proportion to 1 /W.10

The exact functional dependence of the reduction in pinning
is not known. In order to have a rough guide to temperature
dependence, we assume that the E1

2 terms in the MPM should
be replaced with f�W�E1

2 where f�W�=1 / �1+ �W /�2�2�. This
assumed form of f�W� has the correct physical limits for both
large and small W.

D. Effective �„B ,T… and critical current density j„B ,T…

Using the above temperature and field dependences,
EB�j0�=23 kT, and Eqs. �6� and �7�, it can be shown that the
explicit form for ��B ,T� is

��B,T� = 1 + �
92kTc�4	�0�
0

2

n�0
2�0

4

t

�1 + t2�2

1 − t2

1 + t2

− �
92kTc�0B

8�4	�0�
0
2nE1�0�2

t

�1 + t2�2

1

f�W�
, �12�

where Tc=91 K in our overdoped sample. Note that at low
temperature, Eq. �12� reduces to the same low-temperature

form given in Eq. �8�. All terms in this expression are known
or can be measured independently except for the two adjust-
able parameters � and �. It also follows that the critical
current density is given by

j�B,T� =
�0nE1�0�2

92kTc�0
�1 + t2

1 − t2�3/2 �1 − t4�2

t
f�W���B,T� .

�13�

The adjustable parameters can be fixed by measuring ��B ,T�
at 2 T and at two different temperatures. Choosing 7 K and
40 K as measurement points, and solving for the two un-
knowns gives �=1.5 and �=0.49 in satisfactory agreement
with our earlier discussion. From Eqs. �9� and �10� these
parameters give the low-temperature values for the effective
currents as jr=−2.1�109 A /m2 and js= �B /T�0.28
�109 A /m2. As seen in Fig. 2, the agreement between the
MPM prediction for ��B ,T� �Eq. �12�� and experimental
data is excellent. The data are for B=2T. In particular, the
initial rise, the extremum, and the fall of the effective coef-
ficient ��B ,T� are all described very well.

The prediction for j�B ,T� in Eq. �13� is readily evaluated
using hysteresis data. At 2 T, Eq. �13� describes the rapid fall
in critical current density at low temperature and continues to
provide excellent agreement with experiment up to and in-
cluding 50 K. A more stringent test of the MPM prediction
for j�B ,T� is found in the data for the field dependence of the
critical current density at constant temperature. In samples
not dominated by strong pinning defects, a peak effect is
clearly seen in experimental data at 30 K �see Table I�. Data
from our SS sample are compared with Eq. �13� in Fig. 3.
The qualitative features of the peak effect are modeled fairly
well. However, in detail the model consistently predicts too
strong a rise in j�B� at low field and the model does not fully
capture the experimentally observed shift in peak field with
temperature. These shortcomings are not surprising given the
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FIG. 2. The dynamic model is compared with ��T� data. The
solid circles are the data and the solid line is the model prediction.
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severe restrictions on the parameters used to evaluate the
model. In particular, one parameter � is used to represent
four distinct parameters in this complicated stochastic prob-
lem: the coherence length of the order parameter, the flux
core radius, the distance to the barrier height, and the strain
length that leads to the shear stress. Each of these parameters
may have different field and temperature dependences. While
recent measurements33 provide some data for the field and
temperature dependence of the flux core diameter, little or no
data are available for the other two parameters. In addition,
while our data are quantitatively similar to micro-Hall mea-
surements, there remain issues associated with nonuniform
internal fields �especially at lower temperatures� and corner
effects associated with the rectangular geometry of the
sample. It is not the aim of this paper to provide a semi-
empirical best fit to all of the experimental data, but rather to
show that by using reasonable assumptions for the various
parameters, the MPM can be used to describe a wide variety
of experimental results. In this regard, the model is quite
successful. It provides excellent quantitative agreement with
three of the four criteria for collective pinning described in
Sec. II and qualitative agreement with the fourth, the peak
effect.

The MPM for single-fluxoid hopping also makes a clear
prediction for the field dependence of �. The low field value
is always greater than one. As the applied field is increased,
� will gradually fall. At fields above the peak, � will fall
rapidly. Unfortunately, the high critical current density in our
samples prevents the setting up of a Bean critical state at low
magnetic fields. By the time one reaches a temperature with
sufficiently low critical current everywhere, the flux trans-
port is beginning to transition into the small bundle regime
�see the following section�. This restriction frustrates a quan-
titative comparison, but there is qualitative agreement when

the sample is just on the verge of being “single fluxoid,” i.e.,
our field dependent measurements at 68 K and 70 K �similar
to Abulafia24� clearly show the rapid fall of � with increasing
field above the peak.

IV. LENGTH SCALES AND PHASE BOUNDARIES—
RESULTS AND DISCUSSION

Consider a coherent volume of magnetic flux that moves
by thermal activation over a landscape of potential barriers.
In the presence of a current, the pinning force density must
balance the Lorentz force density, FV= j�B. It then follows
that the change in barrier height with current is given by

dEB/dj = BVX , �14�

where V is the coherent volume of the flux bundle undergo-
ing thermal activation and X is the distance needed to trans-
late the bundle to the barrier maximum. By expanding Eq.
�1� about j0 it can be shown that

VX = �kT/B��d2j

dt2���dj

dt
�2

. �15�

Beasley and Webb22 were the first to point out that the physi-
cally meaningful product VX �sometimes called the “four
volume”� can be obtained directly from creep measurements.

For the purposes of testing model predictions, it is useful
to define a length �which may or may not be physically
meaningful� associated with the four volume as

lWebb�B,T� � VX/a0
2� . �16�

The MPM also has a characteristic length. From Eqs. �5� and
�6�,

lmodel�B,T� =
4�23kTc�2

�0
2nE1�0�2

t2�1 + t2�4

f�W�
. �17�

Note that Eq. �17� gives the same low-temperature prediction
as the simple maximum pinning model, i.e., l�T2. If the
system actually consists of single fluxoids with X=�, then
Eq. �16� should represent the length of the hopping-fluxoid
segment. It then follows that if the two lengths are the same,
one has strong support for the MPM of single-fluxoid flux
creep. The two lengths are shown in Fig. 4 for applied fields
of 2 T. For the MPM calculation �Eq. �17��, the measured
low-temperature current density is used to evaluate nE1�0�2.
The two lengths agree remarkably well as a function of tem-
perature up to and including 50 K. In addition, the predicted
T2 dependence is observed at low temperature, however,
small deviations from an exact T2 dependence due to the
temperature dependence of the material parameters can be
seen even at 20 K �data not shown�.

The agreement between the two lengths is strong evidence
in support of single-fluxoid motion in this region of phase
space and provides a very strong confirmation of the predic-
tions of the MPM. We note that at 60 K, the two lengths
differ by almost a factor of two. Data at higher temperatures
at various fields are included in the inset of Fig. 4. For the
higher-temperature data the difference between the two
lengths is approximately a factor of 3. The region where the
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FIG. 3. The MPM model is compared with hysteresis data at
various temperatures. The solid circles are the 30 K data, the solid
triangles are the 40 K data, and the x’s are the 50 K data. The
model results are a dashed line, solid line, and dot-dashed line,
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graph.
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two lengths agree can be interpreted as marking the region in
phase space for single-fluxoid motion. When the lengths dis-
agree, it can be interpreted as a sign of the transition to the
small bundle regime. Note that there is no evidence for a
phase change. We suggest that it is reasonable to interpret the
near integer difference �a factor of 3� between the model
length and the defined Webb length in the small bundle re-
gime as the number of fluxoids in the small bundle. This
finding also suggests that the basic physics of flux motion
remains relatively unchanged in the transition to the small
bundle regime.

Additional data taken at 2 T and at temperatures of 70 K
and above show another large “jump” in the defined Webb
length. This large increase in the four volume is an indication
of the transition into the large bundle regime. It is now pos-
sible to use these measurements to delineate the phase dia-
gram for correlated flux motion, as shown in Fig. 5. The
solid lines are pinning regime boundaries that we take to be
proportional to �Tx−T�1/2, where Tx is the zero-field tempera-
ture boundary for small or large bundles. The temperatures
are Tsb=64 K for small bundles and Tlb=72 K for large
bundles. The zero-temperature field boundaries are taken
from Blatter et al.10 who calculate that Bsb=6 T for small
bundles and Blb=10 T for large bundles. This rather crude
mapping of the phase space is nonetheless quite interesting

and provides a useful guide to future investigations of flux-
oid dynamics.

V. FLUXOID DAMPING AND MASS—RESULTS AND
DISCUSSION

From the Bean model, a drop in the critical current rep-
resents a flow of magnetic flux toward the sample center, and
treating our sample as a thin disk,34 we estimate

dj/dt � 6Bv̄/�0rd , �18�

where v̄ is the average flux velocity, r is the effective sample
radius, and d is the sample thickness. The average flux ve-
locity can also be written as v̄=2�fa exp�−EB /kT�, where the
mean jump distance is assumed to be 2� and fa is the attempt
frequency. Substituting this expression for v̄ into Eq. �18�
and comparing to Eq. �1�, the rate equation, gives the pref-
actor as

K = 12B�fa/�0rd . �19�

The prefactor can be obtained from creep data using the mea-
sured barrier height EB�j0�= �23.0�0.5�kT. At 10 K and 2 T,
the prefactor is K=3.5�1016 A /m2-s giving fa=8.5
�1010 Hz. It is interesting to compare this number with an
estimate by Fischer, Fisher, and Huse15 of the relaxation fre-
quency of a zone boundary flux lattice “phonon”

�ZB  6 � 1010 s−1� H

HC2
�� �n

�� cm
��100 nm



�2

,

where HC2 is the upper critical field and �n is the normal
state resistivity. Using �n=100 �� cm from Wuyts et al.35

gives �ZB4�1010 s−1. This order of magnitude agreement
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between the measured attempt frequency and the calculated
relaxation frequency is gratifying. Their observation that this
“phonon” is overdamped supports the view presented in
Sec. III that the fluxoid is able to sample its environment as
it moves.

A rough estimate for the fluxoid mass can be obtained
from the measured prefactor. Neglecting the drag and assum-
ing a harmonic restoring force with stiffness constant �
=2EB /�2 gives a mass for a segment 210 nm in length of

m = 2EB/�2	�fa�2 � 10−26 kg � 104me, �20�

where me is the free electron mass.
The mass of a fluxoid was first considered by Suhl.36 A

plausible interpretation of his analysis as applied to uncon-
ventional �high-temperature� superconductors37 suggests a
mass of one quasiparticle per conducting plane. The mean
separation of conducting planes in YBCO is about 0.6 nm,
thus the effective quasiparticle mass that would yield our
above result is m*�30me or alternatively, ln�m* /me�
=3.4�1. This effective mass is plausible, particularly since
the quasiparticles will involve Cu 3d orbitals. On the other
hand, a number of additional contributions to fluxoid mass
have been conjectured, but not considered here.38

VI. SUMMARY AND CONCLUSIONS

This work presents an extension of an alternative model
of collective pinning �the maximum pinning model� to wider
regions of the B ,T phase space for superconducting YBCO.
We began with a discussion of samples and preparation tech-
niques and provided quantitative criteria for identifying
samples that are collectively pinned �Sec. II�. Avoiding the
effects of strong pinning defects is crucial in studies of col-
lective pinning. We close with some evidence that the super-
conducting fluxoid in YBCO is purely conventional �Sec. V�.
In-between �Secs. III and IV� we confront data and model
predictions in three regimes. �A� At low temperature the
simple maximum pinning model predicts EB�1 / j� with �
=1 and j�T��1 /T in reasonable agreement with data in the
literature. We show that the simple model predicts that the
critical pinning length lmax�T2. This prediction is also in
good agreement with low-temperature measurements of the
four volume. �B� In the extended maximum pinning model
we identify two contributions to the barrier height EB: one
due to direct near neighbor fluxoid-fluxoid interaction and a
second that arises from the dynamics of the motion of flux-

oid segments. These contributions to the barrier height can
be written in terms of an artificial effective current density
�j. This change accounts for ��1, provides an improved fit
to creep data, and predicts that ��T�=1+cT as confirmed by
data. Further the barrier height dependence on current den-
sity is modified from EB�j��1 / j� to EB�j��1 / �j+�j�. In
agreement with the simple model, the new form of the bar-
rier height also predicts that lmax�T2 except for the tempera-
ture dependence of material parameters and the effects of
fluxoid thermal vibrations. �C� Plausible sources of �j= jr
+ js are presented in simple physical terms that allow the
extension of the maximum pinning model to higher tempera-
tures. The model provides agreement with experiment for
j�B ,T� and ��B ,T� that sheds light on an interesting peak
effect that is seen at relatively low temperature in samples
dominated by collective pinning. As noted earlier, thermal
averaging due to the vibration of single fluxoids reduces the
effectiveness of point defect pinning. From Eq. �11�, the vi-
bration amplitude of a fluxoid is reduced by an increasing B
until the effect saturates at large B. This effect will give rise
to an increase in j with increasing B at low fields as the
application of applied field increases the effectiveness of
point defect pinning. At high field, j will fall with B simply
because of the near neighbor repulsion between fluxoids �the
lagging fluxoid segments are pushed off of their pinning
sites�. Ultimately, this same fluxoid-fluxoid interaction will
lead to the coordinated hopping of bundles. From this point
of view, the low-temperature peak effect in the single-fluxoid
regime is simply a precursor to bundle motion on a larger
scale. Combined with experimental four-volume measure-
ments, this model provides for a determination of the phase
regimes for single-fluxoid, small bundle, and large bundle
fluxoid motion in collectively pinned YBCO.

Our conclusions are �1� the low-temperature regime is
strictly single fluxoid, �2� the extended maximum pinning
model provides an excellent description of j�B ,T� and the
associated flux creep of single-fluxoid motion even up to
50 K, and �3� the measurement of the four volume provides
a powerful investigative tool in the single-fluxoid regime.

The maximum pinning model provides a direct physical
picture of the collective pinning of single fluxoids and pro-
vides a basis of understanding of pinning to build upon for
the investigation of other phenomena of significant techno-
logical interest, including maximizing currents through col-
lective pinning or a combination of collective and strong
pinning defects.
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